1] A polynomial function of least degree, a leading coefficient of 1, and the real zeros of x = 0 with multiplicity 3 and $x = \sqrt{2}$ and $x = -\sqrt{2}$.

B] Degree: _____

End Behavior: as $x \to -\infty$, $y \to$ ____ and as $x \to \infty$, $y \to$ ____

C] Write a *factored form* polynomial given the verbal description.

A] Graph (the zeros are labeled for you ©)

D] Write the equation of the polynomial in <u>standard form</u>.

2] A polynomial of least degree with a positive leading coefficient has real zeros of x = -5 and x = -2, and x = 0 with multiplicity 2.

B] Degree: _____

End Behavior: as $x \to -\infty$, $y \to \underline{\hspace{1cm}}$ and as $x \to \infty$, $y \to \underline{\hspace{1cm}}$

A] Graph (the zeros are labeled for you ③)

C] Write a *factored form* polynomial given the verbal description.

-7 -6 -5 -4 -3 -2 -1 0 i 2

D] Write the equation of the polynomial in <u>standard form</u>.

3] A polynomial function of least degree, a leading coefficient of 1, and the real zero of x = 2 and imaginary zeros of $x = \pm 3i$.

A] Degree: _____

End Behavior: as $x \to -\infty$, $y \to$ ____ and as $x \to \infty$, $y \to$ ____

B] Write a *factored form* polynomial given the verbal description.

C] Write the equation of the polynomial in *standard form*.

4] A polynomial of least degree with a positive leading coefficient has real zeros of x = -3 and x = 3 with multiplicity 2.

B] Degree: _____

End Behavior: as $x \to -\infty$, $y \to$ ____ and as $x \to \infty$, $y \to$ ____

A] Graph (the zeros are labeled for you ©)

D] Write the equation of the polynomial in <u>standard form</u>.

5] A polynomial of least degree with a negative leading coefficient has real zeros of x = 1 and x = -1, both with multiplicity 2.

B] Degree: _____

End Behavior: as $x \to -\infty$, $y \to$ ____ and as $x \to \infty$, $y \to$ ____

A] Graph (the zeros are labeled for you ©)

D] Write the equation of the polynomial in <u>standard form</u>.

A] Degree: _____ Sign of leading coefficient: ____

End Behavior: as $x \to -\infty$, $y \to \underline{\hspace{1cm}}$ and as $x \to \infty$, $y \to \underline{\hspace{1cm}}$

B] List the zeros of the graph including any multiplicity.

C] Write a *factored form* polynomial given the graph shown.

D] Write the equation of the polynomial in <u>standard form</u>.

7] A polynomial function of least degree, a leading coefficient of 1, and the imaginary zeros of $x = 1 + 3i$ and $x = 1 - 3i$.
A] Degree:
End Behavior: as $x \to -\infty$, $y \to $ and as $x \to \infty$, $y \to $
B] Write a <u>factored form</u> polynomial given the verbal description.
C] Write the equation of the polynomial in <i>standard form</i> .
8] A polynomial function of least degree, a leading coefficient of -1, real zeros of $x=1$ and $x=-1$.

8] A polynomial function of least degree, a leading coefficient of -1, real zeros of $x=1$ and $x=-1$,
and the imaginary zero of $x = 1 + 3i$ and $x = 1 - 3i$. (Hint: Use answer from #7)
A] Degree:

B] Write a *factored form* polynomial given the verbal description.

End Behavior: as $x \to -\infty$, $y \to$ ____ and as $x \to \infty$, $y \to$ ____

C] Write the equation of the polynomial in *standard form*.